
Applied Computing Journal https://doi.org/10.52098/acj.20216

ISSN: 2788-9688 Volume 1, Issue 1, pp 10-24, January 2021

Received: 7/9/2020 Revised: 2/1/2021 Accepted: 23/1/2021

 Author(s) and ACAA permit unrestricted use, distribution, and reproduction in any medium,

provided the original work with proper citation. This work is licensed under Creative Commons Attribution

International License (CC BY 4.0).

Fuzzy and Mathematical Effort Estimation

Models for Web Applications Development

Jabar H. Yousif1* and Dinesh Kumar Saini2
1 Faculty of Computing & Information Technology, University of Sohar, Oman

2 Manipal University Jaipur, Department of Computer & Communication Engineering, India.

* Corresponding author: Jabar H. Yousif; jyousif@su.edu.om.

Abstract

This paper proposed an Effort Estimation Model for optimizing the deployment of Web Applications Based Fuzzy

and Practical Models. This paper presented the effort estimation model that involves two levels—the first level

estimates by Project Managers, and the second level estimates by Project Leaders or Developers. The model considers

the classification of each task as either Low or Medium or High complexity. Efforts are estimated to design, code, and

test tasks and take a new requirement as a case study, compared with the practical efforts model using historical data

for the existing functionalities. The fuzzy logic model verifies the claims made in effort estimation, which proposed a

new relation between data and effort value membership for actual data. It converts it into a crisp function in the range

[0,1], which helps classify the task's complexity and subtask in the design, coding, and testing phases quickly, low

cost, and high accuracy. The proposed effort estimation model would allow the project managers to efficiently control

the project, manage the resources effectively, improve the software development process, and trade-off analyses time.

Keywords: Effort Estimation; Fuzzy model; Software Development; Web Applications; COCOMO Models

http://www.acaa-p.com/index.php/acj
https://doi.org/10.52098/acj.20216
mailto::https://creativecommons.org/licenses/by/4.0/

11

1. Introduction

The effort estimation is considered as one of the important activities in software development project management.

Several researchers have been discussed and modeled the association between software development's main factors,

like size and efforts (Al Asheeri & Hammad, 2019). Nerveless, all these efforts, but still many problems need to solve

and still. These problems usually happened in the early phases of a project, such as inconsistent, uncertain, and unclear

data. The enhancement of the effort estimation phase is considered a vital tool for software development planning and

forecasting the time and cost of developing a software project system (Huang et al., 2007). Creating low-price software

development is regarded as an essential feature to produce competitive software. The relation between the need for

reliable and accurate software in one direction and the prediction software cost is a challenging matter (Abhishek et

al., 2010). Typically, software effort estimation models can be classified into algorithmic and non-algorithmic models.

The main computation method in algorithmic models is based on the statistical analysis of historical data and Software

Life Cycle Management (SLIM). Besides, the COCOMO and Albrecht's Function Point models (Bardsiri et al., 2013).

They focused on creating a precise estimation method for determining the values of main factors like the size of

software lines of code (LOC), the complexity of each code, the number of interfaces, and user screens (Aloka et al.,

2011). The estimation of software project effort or cost has always been challenging despite the incredible amount of

research (Araújo et al., 2012). These challenges include the lack of understanding of the software project scope, the

time pressure to complete the project, tight budgets, and quantitative results (Anandhi & Chezian, 2014). The

administrators of the web application set these privileges. The application provides the number of allocations made

by users to enable billing of the clients for the service provider (Malathi & Sridhar, 2012).

Several methods are suggested for enhancing the efficiency of effort estimation. One of the most generally applied

algorithmic models for estimating effort in the industry is COCOMO (Nguyen et al., 2019). Kaushik's (Kaushik et al.,

2017) proposed method (CUCKOO-FIS) combines two optimization models (Cuckoo optimization, Fuzzy Inference

System). This method is employed in the software cost estimation for effort optimization, which is trained using the

tera-PROMISE datasets. The results show that the proposed model has improved accuracy in cost estimation. Rijwani

(Rijwani & Jain, 2016) proposes an Artificial Neural Network (ANN) model using Multi-Layered Feed Forward

Neural Network (MLFF) with Back Propagation learning method. The proposed model shows better results and

accurately predicted the software estimation effort. Thamarai (Thamarai & Murugavalli, 2016) introduces a software

effort estimation based on a differential evolution algorithm called DEAPS, which is examined on the Desharnais

12

dataset. The results prove that the proposed method develops the ability of exploration. Bardsiri (Bardsiri et al., 2013)

introduces a hybrid estimation model based on a particle swarm optimization (PSO) algorithm and an Analogy-based

estimation (ABE). This study obtained accurate estimates of results based on categorical and non-categorical datasets.

Also, it helps to improve the performance of existing estimation models.

This paper's main focus is to build a fuzzy effort estimation model for design, development, and the unit test of a

web application, either new or enhancement. This model will estimate based on the effort data available for past

releases.

2. Existing Effort Estimation Model

The existing effort estimation model for design and development establishes a pattern that resembles features to

be implemented in the new enhancement (Kumar et al., 2020). The model compares the practices implemented in

earlier releases and finds out a close match. The effort required to implement the matched pattern(s) in the previous

releases is used to predict the future effort (Saini & Yousif, 2018). The patterns are matched based on specific metrics

like (the Number of controls added, Number of files accessed, and Nature of database access).

The web application is classified under various modules like:

• Graphical User Interface Design like adding, modifying and deleting controls

• Graphical User Interface Functionality

• Database schema

• Generation of Reports

• Data Import

• Less/more data centric changes

Based on the requirement analysis, details are worked out in existing patterns, and the estimation is derived for

every new enhancement. A data repository is already available, which has the efforts of design and development for

various patterns. The model's drawbacks are that it is difficult to measure the similarity levels between the current

requirements and those implemented in the past. When the requirements for a feature consists of a small set of tasks

like modifying a data element based on a configuration parameter, the estimates were pretty accurate. On the other

hand, if the requirements are called for many tasks, then the estimation is made with this model were highly inaccurate

(Pandey et al., 2020). Also, the effort required to arrive at an estimate was very high, and hence it was considered

unproductive. The model provides the estimation in terms of person days, which does not usually reflect the correct

effort in person-hours.

13

3. Proposed Effort Estimation Model

 This paper's main focus is to build a fuzzy effort estimation model for design, develop, and the unit test of a web

application, either new or enhancement. This model will estimate based on the effort data available for past releases.

The model is based on each task's complexity, which assumes that the task complexity is either low or medium or

high. Each level of complexity also has three sub-levels of complexity. So, there are nine levels of complexity for any

task (Du et al., 2015). Each group of complexity is assigned the effort in terms of person hours for design, coding and

unit testing.

 The effort involves a bottom-up approach where a task is broken into several subtasks. The subtask could be

developed using SQL Server programs or VB programs or ASP program, or any combination (Arnuphaptrairong T.,

2013). The efforts of all the subtasks are added to get the total effort required for a task. The total effort for design,

coding, and unit testing of each pattern is calculated for any repeated units.

4. Data Collection

The design corresponding to each of the features implemented in a major release for the repository holds the data

of programs written in Active Server Pages. The commands executed in the branding example are illustrated in

Appendix 1. The estimation process aims to measure historical projects' attributes to arrive at a bottom-up effort

estimation model. Bottom-up estimation begins with the lowest level parts of products or tasks to provide estimates

for each. Then these estimates are combined to arrive at the higher-level estimates. The effort spent on each subtask

is summed in each developer's timesheet that implemented the feature. So, the subtasks were interpreted for a given

feature, and complexity was assigned to each subtask. For example, let us consider a feature that was implemented to

add search criteria to the web application. The requirement was to search all the corporate cardholders based on their

First Name and Last Name. The subtasks to implement this feature are:

1. Add form elements are corresponding to the first name and last name in an ASP page. (Technically, this means

adding two text boxes – one for the First Name and the other for Last Name)

2.Add a JavaScript function to validate the user entries into these form elements (Technically, this means a new

function needs to be written in JavaScript in the ASP page to validate for entries in mandatory fields and presence of

special characters)

3. Modify a JavaScript function submit the form (In the existing web application, a JavaScript function already exists

to submit forms to the server. This function needs to be modified to include this new ASP page)

4. Add new stored procedure in SQL Server to return the set of cardholders based on the input (i.e., First Name and/or

Last Name) – Corresponds to writing a query to retrieve results from two tables

14

5. Modify a VB method to call the above-stored procedure by passing the parameters viz—first Name and Last Name,

using a Command Object.

6. Adding a server-side function in ASP to display the cardholders (Server-side functions are written in VB script in

the web application discussed)

Each of these subtasks is assigned a complexity as shown below.

• SubTask 1 – Low Complexity.

• SubTask 2 – Low Complexity.

• SubTask 3 – Medium Complexity.

• SubTask 4 – Low Complexity.

• SubTask 5 – Low Complexity.

• SubTask 6 – Medium Complexity.

These complexities are assigned based on the actual effort (Mishra, Tripathy et al., 2010). The author's

organization's set of guidelines is followed wherever the time sheets did not reflect the subtasks correctly after

identifying the subtasks belonging to each category. Low, medium, and high, the effort required for each subtask is

computed from the timesheet. Appendix 1 shows that to add processes such as "add a new search criterion", the effort

taken works out to 20.5 person hours as detailed below.

• SubTask 1 – 1-person hour x (2 form elements) = 2 person hours

• SubTask 2 – 4 person hours

• SubTask 3 – 3 person hours

• SubTask 4 – 1.5 person hours

• SubTask 5 – 4 person hours

• SubTask 6 – 6 person hours

Total Person Hours = 20.5 (for design, coding and unit testing)

This work addresses the non-availability of the subtask details for every new requirement during a high-level

design stage by building a list of all possible generic features that could be implemented in the web application and

recommending the level of complexity for every feature in the list. This does not limit the estimators to define the

complexity perceived based on specific requirement characteristics. The estimator can rate a feature as “Medium”

complexity even if the recommended complexity is “Low” and vice versa. The list of all possible generic features and

the recommended complexity for SQL, VB, and ASP programs as appropriate is given in Appendix 2. The complexity

for each of these features has been arrived based on the complexity of subtasks. Assigning the overall complexity for

each of these features has been decided after consultation with designers and developers (Minku & Yao, 2013).

15

5. Soft Computing & Fuzzy Systems

 Soft Computing (SC) is a new computing technique for utilizing real-world problems and provides lower-cost

solutions. It mainly consists of the following methods: neural networks, fuzzy systems, and evolutionary computation.

Fuzzy systems are implemented in a linguistic framework used to handle linguistic information and then perform

approximate reasoning. The significant directions of soft computing applications are executed and conducted into

knowledge representation, learning methods, path planning, control, coordination, and decision making (Yousif, J.

2015). Furthermore, SC is performed successfully in many applications such as character recognition, data mining,

Natural Language Processing (NLP) (Yousif, J. 2013), Image processing, Machine control, Software engineering

(Saini, Yousif, & Omar, 2009), Information management, etc.

 Despite all efforts in using the computation in algorithmic models, it is not reached to produce efficient and reliable

software models. As a result, there was a need to explore new methods for solving algorithmic models' limitations.

The traditional techniques need to be replaced with non-traditional methods of calculation, such as Parkinson's, and

experts estimate and Judgment, Price-to-Win and lastly, the machine learning methodologies (Yousif & Saini, 2020).

The uses of techniques such as neural networks and logic fuzzy are more modern techniques for calculating the

estimation models, which work on a few and inaccurate data and produced accurate and reliable results. Fuzzy logic

is an expert knowledge-based approach with powerful linguistic representation for epitomizing imprecision in input

and output data sets for model building. Fuzzy systems are suitable for the uncertain or approximate reasoning function

based on fuzzy rules, and it can be attuned by tuning the rules. The fuzzy set methods are appropriate for linguistic

reasoning modes of nature to humans. It is used the concept of crisp sets. Data's robustness and flexibility are

implemented by removing the sharp boundary between members and non-members of a group (Nassif et al., 2019).

The fuzzy set of an input variable's membership function is mapping a universe of discourse in the interval [0, 1]. Let

X is a non-empty set, and then the membership or containment of X in a fuzzy set is "A" which decides an attribute

membership function μA(x) ∈ [0, 1]. It is mathematically expressed as in Eq. 1:

𝑨 = ∑ (
𝛍𝐀(𝒙𝒊)

𝒙𝒊
)𝒏

𝒊=𝟏 (1)

6. Implementation of the Estimation Model (Case Study)

 This effort estimation model is used to estimate the effort based on new requirements in vogue. The estimated

effort has been compared with the actual effort for three of the features implemented. The description of these three

features is described below.

16

1. Branding Changes – corresponds to Graphical User Interface Design changes

2. Modification to Reports – corresponds to more data centric utility

3. Handling of transaction disputes – corresponds to Graphical User Interface Functionality.

As a case study, let us consider the estimation for branding changes.

The requirements for the branding changes are the following:

1. Add 8 new menu items.

2. Add 12 new 1st level sub menu items.

3. Add 9 new 2nd level sub menu items.

4. Add functionalities for Mouse_Over and Mouse_Out events for each menu and sub menu item.

5. Associate a path with every menu and sub menu item.

6. Add graphics to each menu and sub menu item.

 Based on Appendix 2, the estimation for the design effort is as given in Table 1. The branding changes involved

development is worked only in ASP pages, the estimation was done by taking the values listed for ASP pages in each

sub task. The Table 3 illustrates a case study – effort estimation for coding based on practical calculations.

 The total effort estimated for coding works out to 204.6 person hours. The actual effort was 189 person hours. The

variance works out to about 8.2%. The Table 3 depicts the use case of the calculation effort estimation unit in testing

phase. The estimated total effort for unit testing works out to 69.5 person hours. The actual effort was 88 hours. The

variance works out to about 26.6%. Based on the above comparison between estimated effort and actual effort, it can

be concluded that the effort estimation model can be used to estimate with a variance of about 25%. This variance is

very much acceptable for first level estimation.

The practical and estimation calculation shows that the complexity of branding changes is only medium and high.

But this is not reflecting the real case of the efforts spend in different stages. For example, if the user wants to add 8

new menu items, then the estimated effort is 5.5 (the first row in Table 1), and complexity is high. While if the user

wants to add 12 new sub-menu items first, then the estimated effort is 7.5 (the second row in Table 1), and complexity

is medium. This will make a vague understanding of the meaning of complexity values. Now, we will calculate the

estimation of efforts based on the Fuzzy model.

The fuzzy model's implementation is discussed, and the case study of the effort estimation for design

in Table 1 is implemented as a fuzzy model as depicted in Figure 1. Table 4 presents the relationship

between the amount of data in the application and the basic estimation efforts parameters.

17

Table 1: Case Studies – Effort Estimation for Design

SN.

No.

Description Complexit

y

Basic

Effort

Multiplication

Factor

Calculation Estimated Effort,

Person Hours

1 Add 8 new menu items High 2.0 0.25 2.0+(0.25x2x7) 5.5

2 Add 12 new 1st level sub

menu items

Medium 2.0 0.25 2.0+(0.25x2x11) 7.5

3 Add 9 new 2nd level sub

menu items

Medium 2.0 0.25 2.0+(0.25x2x8) 6.0

4 Add Mouse Over Event for

each item

Medium 2.0 0.6 2.0+(0.6x2x28) 35.6

5 Add Mouse Out Event for

each item

Medium 2.0 0.6 2.0+(0.6x2x28) 35.6

6 Add Graphic to each item Medium 1.0 0.3 1.0+(0.3x1x28) 9.4

7 Associate path with each

menu

Medium 2.0 0.5 2.0+(0.5x2x28) 30.0

Table 2: Case Studies – Effort Estimation for Coding

SN.

No.

Description Complexity Basic

Effort

Multiplication

Factor

Calculation Estimated Effort,

Person Hours

1 Add 8 new menu items High 8.0 0.25 8.0+(0.25x8x7) 22.0

2 Add 12 new 1st level sub

menu items

Medium 4.0 0.25 4.0+(0.25x4x11) 15.0

3 Add 9 new 2nd level sub

menu items

Medium 4.0 0.25 4.0+(0.25x4x8) 12.0

4 Add Mouse Over Event

for each item

Medium 3.0 0.6 3.0+(0.6x3x28) 53.4

5 Add Mouse Out Event for

each item

Medium 3.0 0.6 3.0+(0.6x3x28) 53.4

6 Add Graphic to each item Medium 2.0 0.3 2.0+(0.3x2x28) 18.8

7 Associate path with each

menu

Medium 2.0 0.5 2.0+(0.5x2x28) 30.0

Table 3: Case Studies – Effort Estimation for unit Testing

SN.

No.

Description Complexity Basic

Effort

Multiplication

Factor

Calculation Estimated Effort,

Person Hours

1 Add 8 new menu items High 1.0 0.25 1.0+(0.25x1x7) 2.75

2 Add 12 new 1st level sub

menu items

Medium 1.0 0.25 1.0+(0.25x1x11) 3.75

3 Add 9 new 2nd level sub

menu items

Medium 1.0 0.25 1.0+(0.25x1x8) 3.0

4 Add Mouse Over Event

for each item

Medium 1.0 0.6 1.0+(0.6x1x28) 17.8

5 Add Mouse Out Event for

each item

Medium 1.0 0.6 1.0+(0.6x1x28) 17.8

6 Add Graphic to each item Medium 1.0 0.3 1.0+(0.3x1x28) 9.4

7 Associate path with each

menu

Medium 1.0 0.5 1.0+(0.5x1x28) 15.0

18

Table 4: Complexity matrix for external input (EI)

FTR (File Type

References)

1-5 5-15 >15

0-1 Low Low Medium

2 Low Medium High

3 or more Medium High High

Usually, any fuzzy system consists of three main phases, commonly referred to as, Fuzzification, rule

Evaluation, and defuzzification. However, Fuzzifier converts the crisp input to a linguistic variable using

the membership functions stored in the fuzzy knowledge base. Then using If-Then type fuzzy rules converts

the fuzzy input to the fuzzy output. Therefore, can translate the values with (0/1) in the file type references

in the meaning of rules for external input (EI) with 0 or 1 file type references as follows:

R1: If the number of data in the range [0…4], then complexity is a low.

R2: If the number of data in the range [5…15], then complexity is a low.

R3: If the number of data is greater 15, then complexity is a medium.

Also, the values with 2 file type references can be translated in the meaning of rules for external input

(EI) as follows:

R4: If the number of data in the range [0…4], then complexity is a low.

R5: If the number of data in the range [5…15], then complexity is a medium.

R6: If the number of data is greater 15, then complexity is a high.

Lastly, the values with 3 and more file type references can be translated in the meaning of rules for

external input (EI) as follows:

R7: If the number of data in the range [0…4], then complexity is a medium.

R8: If the number of data in the range [5…15], then complexity is a high.

R9: If the number of data is greater 15, then complexity is a high. Defuzzifier converts the fuzzy output of

the inference engine to crisp using membership functions analogous to the ones used by the fuzzifier.

The membership function must be computed and transferred as a crisp function in the range of [0…1]

as depicted in Table 5.

19

Table 5: The crisp values of each estimated effort

Complexity Basic estimated

effort

Crisp function

3 5.5 0.1544

2 7.5 0.2106

2 6 0.1685

2 35.6 1

2 35.6 1

2 9.4 0.2640

2 30 0.8426

Figure 2 shows that it can gain a high complexity only if any data number reaches a 1 in crisp function.

And the complexity medium is cached if the value of a crisp function in the range of [0.2640 …0.8426].

Finally, the complexity low is acquired if the value of a crisp function in the range of [0… 0.2640].

Figure 1: the relations between the number of data & efforts value

Figure 2: the relations between the complexity & crisp values

0

10

20

30

40

50

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

E
ff

o
rt

 v
a

lu
e

Low Medium High

Number of data

Low(1-5) Medium(5-15) High>15

0.154494382

0.210674157

0.168539326

1 1

0.264044944

0.842696629

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7

C
ri

sp
 V

al
u

e

Case Number

Crisp Value

20

Figure 3 shows the MSE for training and cross-validation for the Fuzzy logic model. It is giving evidence that the

output of the fuzzy model closely fits the desired data. The data sets are divided into three categories (60 % as training

data sets, 20% as cross-validation data sets, and 20% as testing data sets). The model achieved a final MSE of (0.0647)

in the training phases, and it is reached a minimum MSE of (0.0017) as summarized in Table 6. The fuzzy model will

be exchanged the rules [R1 to R9], into a new form based on the crisp function values. Therefore, the rules will be as

follows:

R1: If the crisp value is 1, then complexity is a high.

R2: If the crisp value in the range [0.2640 …0.8426], then complexity is a medium.

R3: If the crisp value in the range of [0… 0.2640], then complexity is a low.

The same transformation will be implemented for the other rules for coding, design and testing.

Figure 3: The MSE for training and cross validation for Fuzzy logic model.

Therefore, the fuzzy logic model is reducing the computation time by replacing the old model (with 9 rules),

with new model with only (three rules). Besides, the fuzzy logic model determines that there no need to paid effort

for testing the medium stage. The new module is

Table 6: The results of fuzzy model and Final MSE

Best Networks Training Cross

Validation

Epoch # 200 478

Minimum MSE 0.0544 0.0017

Final MSE 0.0647 0.1148

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1 100 199 298 397 496 595 694 793 892 991

M
S

E

Epoch

MSE versus Epoch

Training MSE Cross Validation MSE

21

7. Conclusion and Recommendations

The effort estimation model discussed in this paper focuses on estimating the effort of design, coding, and unit

testing, and the first level estimates are within a variance of about 25%. The variance would improve for second level

estimates and is expected to be about 15%. Estimation must be as closer as possible.

The results can also be compared with estimates calculated using function points and other methods that use

regression. The first level estimates computed using the effort estimation model have a variance of about 25%

compared with the actual effort. This variance is very much acceptable considering that the first level estimates can

be tolerable by up to 35%. The proposed effort estimation tool would help the project managers efficiently control the

project, manage the resources effectively, and improve the software development process and trade-off analyses

among schedule, performance, quality, and functionality. A Soft Computing approach is implemented, and results are

verified using the Fuzzy Logic models, which compute the complexity accurately and quickly. A serious problem in

the effort estimation models that some subtasks did not use before hasn't any complexity yet. Using the fuzzy models

can quickly compute these tasks' complexity and then estimate the effort needed to build the application. Using a fuzzy

model helps calculate the complexity of different tasks like design, coding, and testing.

Acknowledgment

The research leading to these results has no Grant Funding.

References

[1]. Abhishek, C., Kumar, V. P., Vitta, H., & Srivastava, P. R. (2010). Test effort estimation using neural network. journal of

Software Engineering and Applications, 3(04), 331.

[2]. Al Asheeri, M. M., & Hammad, M. (2019). Machine Learning Models for Software Cost Estimation. Paper presented at the

2019 International Conference on Innovation and Intelligence for Informatics, Computing, and Technologies (3ICT).

[3]. Aloka, S., Singh, P., Rakshit, G., & Srivastava, P. R. (2011, August). Test effort estimation-particle swarm optimization based
approach. In International Conference on Contemporary Computing (pp. 463-474). Springer, Berlin, Heidelberg.

[4]. Anandhi, V., & Chezian, R. M. (2014). Regression techniques in software effort estimation using cocomo dataset. Paper

presented at the 2014 international conference on intelligent computing applications.

[5]. Araújo, R. D. A., Soares, S., & Oliveira, A. L. (2012). Hybrid morphological methodology for software development cost

estimation. Expert Systems with Applications, 39(6), 6129-6139.

[6]. Arnuphaptrairong, T. (2013). Early stage software effort estimation using function point analysis: an empirical validation.

International Journal of Design, Analysis and Tools for Integrated Circuits and Systems, 4(1), 15.

[7]. Bardsiri, V. K., Jawawi, D. N. A., Hashim, S. Z. M., & Khatibi, E. (2013). A PSO-based model to increase the accuracy of

software development effort estimation. Software Quality Journal, 21(3), 501-526.

22

[8]. Du, W. L., Ho, D., & Capretz, L. F. (2015). Improving software effort estimation using neuro-fuzzy model with SEER-SEM.
arXiv preprint arXiv:1507.06917.

[9]. Huang, X., Ho, D., Ren, J., & Capretz, L. F. (2007). Improving the COCOMO model using a neuro-fuzzy approach. Applied

Soft Computing, 7(1), 29-40.

[10]. Kaushik, A., Verma, S., Singh, H. J., Chhabra, G. (2017). Software cost optimization integrating fuzzy system and COA-

Cuckoo optimization algorithm. 8(2), 1461-1471.

[11]. Kumar, P. S., Behera, H. S., Kumari, A., Nayak, J., & Naik, B. (2020). Advancement from neural networks to deep learning

in software effort estimation: Perspective of two decades. Computer Science Review, 38, 100288.

[12]. Malathi, S., & Sridhar, S. (2012). Efficient estimation of effort using machine-learning technique for software cost. Indian

Journal of Science and Technology, 5(8), 3194-3196.

[13]. Minku, L. L., & Yao, X. (2013). Ensembles and locality: Insight on improving software effort estimation. Information and
Software Technology, 55(8), 1512-1528.

[14]. Mishra, S., Tripathy, K. C., Mishra, M. K. (2010). Effort estimation based on complexity and size of relational database

system. 1(2), 419-422.

[15]. Nassif, A. B., Azzeh, M., Idri, A., Abran, A. (2019). Software development effort estimation using regression fuzzy models.

2019.

[16]. Nguyen, V., Boehm, B., & Huang, L. (2019). Determining relevant training data for effort estimation using Window-based

COCOMO calibration. Journal of Systems and Software, 147, 124-146.

[17]. Pandey, M., Litoriya, R., & Pandey, P. (2020). Validation of existing software effort estimation techniques in context with

mobile software applications. 110(4), 1659-1677.

[18]. Rijwani, P., & Jain, S. (2016). Enhanced software effort estimation using multi layered feed forward artificial neural network

technique. 89, 307-312.

[19]. Saini, D. K., & Yousif, J. H. (2018). Effort Estimation Model for Developing Web Applications Based Fuzzy and Practical

Models.

[20]. Saini, D. K., Yousif, J. H., & Omar, W. M. (2009). Enhanced inquiry method for malicious object identification. 34(3), 1-5.

[21]. Thamarai, I., & Murugavalli, S. (2016). An evolutionary computation approach for project selection in analogy based software

effort estimation. Indian Journal of Science and Technology, 9(21).

[22]. Yousif, J. H., & Saini, D. K. (2020). Big Data Analysis on Smart Tools and Techniques. In Cyber Defense Mechanisms (pp.

111-130). CRC Press.

[23]. Yousif, J. H. (2013). Natural language processing based soft computing techniques. 77(8).

[24]. Yousif, J. H. (2015). Classification of Mental Disorders Figures based on Soft Computing Methods. 117(2), 5-11.

Appendix 1: List of Sub Tasks in ASP Program

ASP

Items

Sub Task Description Complexity Effort Person

Hours

1 Adding a new menu to Branding Medium 6

2 Adding a sub-menu to Branding Medium 4

3 Adding a mouse event to a menu Medium 3

4 Adding a graphic to a menu/submenu Medium 1.5

5 Modifying a picture in Branding Header Medium 1.5

6 Modifying a link in Branding Header Low 1.5

7 Modifying a link in Branding Footer Low 1.5

8 Navigating the user to a specific page based on the user action Low 1.5

9 Adding a java script function to validate user entries Medium 4

10 Modifying a java script function to validate user entries Low 2

11 Modifying display of GUI content Low 2.5

12 Adding a form element Low 1

13 Adding a client function to submit the form Low 1

14 Adding a server-side function for pagination Medium 4

15 Removing a form element Low 1

16 Writing a server-side function to render HTML content Medium 6

17 Adding a method to call a SQL statement using connection object Low 1.5

23

18

Adding a method to call a Stored Procedure by passing parameters using

a Command object

Medium
4

19 Modifying a method to call a SQL statement using connection object Low 2

20

Modifying a method to call a Stored Procedure by passing parameters

using a Command object

Low
3

21 Navigating a record set and displaying values in a form element Medium 3

22

Adding a method to build a SQL statement and execute using

Connection object

Medium
4

23 Populating static values in a form element Low 3

Appendix 2: List of Features with Recommended Complexity

S.No. Description SQL VB ASP

1 Check for the existence of a configuration parameter Low Low Low

2 Identify values in the database based on input Low

3 Update values in the database based on input Medium

4 Insert new values in the database based on input Medium

5 Update related values in the database based on the master

value inserted/updated
Medium

6 Loop through a set of values and perform updates High

7 Add filters Medium

8 Establish referential integrity among entities Medium

9 Delete value(s) based on input Low

10 Delete value(s) based on input and also establish referential

integrity
Medium

11 Write a new field into the file Medium

12 Update a field in the file Medium

13 Select output based on input/filters Low

14 Select output based on complex logic High

15 Format the output Medium Medium

16 Add a new field to the entity Low

17 Validate a file Medium

18 Map source field and destination field Medium

19 Identify the group to which a set of values belong Medium

20 Identify entities dynamically based on input High

21 Generate Reports Medium

22 Validate business rules Medium Medium Medium

23 Validate Data Types Medium

24 Menu Design - Add a new menu High

25 Add a new sub-menu Medium

26 Add a mouse event to a menu Medium

27 Add a graphic to a menu/sub- menu Medium

28 Modify Branding Header Medium

29 Modify Branding Footer Medium

30 Read a value from registry Low Low

31 Write a value into registry Low Low

32 Add a new search criterion Medium Medium

33 Navigate the user to a specific page based on the user action Medium

24

34 Validate user entries Medium

35 Formatting GUI displays Medium

36 Add a new user input field Medium

37 Implement Pagination feature Low Medium

38 Removing a user input field Low

39 Displaying results in the form Medium Medium

40 Maintain user state across pages Medium Medium

41 Save user's search criteria Medium Medium Medium

42 Adding privileges to user groups Medium Low Low

43 Computing values based on user input Medium Medium Low

44 Generate Reports in Complex Formats Medium High

45 Tune Performance High Medium Medium

46 Login Process Medium High Medium

47 Validate Login Privilege High Medium Low

48 Purge Obsolete Data High Medium

49 Handle encrypted customer data Medium High Medium

50 Add a new entity Medium

51 Import Data - design a utility High High

52 Print Reports Medium Medium High

53 Add a new menu based on user's privilege Medium Medium High

54 Add a sub-menu based on user's privilege Medium Medium Medium

55 Validate user entries based on business rules Medium Medium Medium

 Author(s) and ACAA permit unrestricted use, distribution, and reproduction in any medium,

provided the original work with proper citation. This work is licensed under Creative Commons Attribution

International License (CC BY 4.0).

mailto::https://creativecommons.org/licenses/by/4.0/

